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Astrometric reference frames in the solar system
and beyond

S. Kopeikin

Department of Physics & Astronomy, University of Missouri, 322 Physics Bldg., Columbia,
MO 65211, USA

Abstract. This presentation discusses the mathematical principles of constructing coordi-
nates on curved spacetime manifold in order to build a hierarchy of astrometric frames in
the solar system and beyond which can be used in future practical applications as well as
for testing the fundamentals of the gravitational physics - general theory of relativity.

1. Introduction

Fundamental astrometry is an essential ingre-
dient of modern gravitational physics. It mea-
sures positions and proper motions of vari-
ous celestial objects and establishes a corre-
spondence between theory and observations.
Theoretical foundation of astrometry is general
theory of relativity which operates on curved
spacetime manifold covered by a set of local
coordinates which are used to identify posi-
tions and to parametrize the motion of celestial
objects and observer. The set of the local co-
ordinates is structured in accordance with the
hierarchical clustering of the gravitating bod-
ies. The astrometric frame is derived after mak-
ing observational connection between the the-
oretical and observed coordinates of the celes-
tial objects. The frame can be either dynam-
ical or kinematic depending on the class of
celestial objects having been used for build-
ing the frame. The local astrometric frames are
not fully independent – they must be matched
to a global astrometric frame which is usu-
ally build by making use of quasars as bench-
marks. Mathematical description of the local
and global frames require to solve Einstein’s
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equations in order to find out the metric tensor
corresponding to the coordinate charts cover-
ing either a local domain or the entire space-
time manifold.

The standard theory adopted by the
International Astronomical Union (IAU) pos-
tulates that spacetime is asymptotically-flat
and the only source of gravitational field is the
matter of the solar system (Soffel et al. 2003;
Kopeikin 2007). This approach completely ig-
nores the presence of the huge distribution of
mass in our own galaxy – the Milky Way, the
local cluster of galaxies, and the other visi-
ble matter of the entire universe. Moreover, the
current mathematical approach to the construc-
tion of astrometric local and global coordinates
does not take into account the presence of the
dark matter and the dark energy which, alto-
gether, make up to 96% of the total energy
of the observed universe. It requires a certain
extension of the current IAU paradigm on as-
trometric frames to account for recent astro-
physical discoveries. The updated astrometric-
frame theory has to answer another important
question about how the Hubble expansion of
the universe affects our measurement of the
spacetime properties. This problem has been
extensively discussed recently by Krasinsky &
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Brumberg (2004), and especially by Carrera
& Giulini (2010) on the basis of exact solu-
tions of Einstein’s equations. However, their
arguments can not be fully accepted so far
as the post-Newtonian approximation methods
have to confirm (or disprove) their mathemati-
cal derivations.

2. Astrometric frames in the solar
system

The current IAU paradigm suggests that the
solar system is the only source of gravita-
tional field and that at infinity the spacetime
is asymptotically flat. This paradigm has been
worked out over time to the degree of practical
implementation by a number of researchers.
The most comprehensive theoretical descrip-
tion of the IAU reference frames paradigm is
presented in (Soffel et al. 2003) and in a re-
cent monograph (Kopeikin et al. 2011). The
IAU paradigm operates with a number of local
and one global reference frames which are con-
nected to each other by post-Newtonian coor-
dinate transformations. The most important for
description of astrometric measurements is the
local frame of observer, the geocentric frame
(GRF), and the barycentric frame (BRF) of the
entire solar system (Kopeikin 2011).

2.1. The proper frame of observer

An ideal observer in general relativity must
be understood as a point-like test parti-
cle equipped with measuring devices like
clocks, rulers, gyroscopes, lasers, receivers,
and other possible measuring devises (Klioner
2004). Observer moves along timelike world-
line which may be or may be not a geodesic.
For example, observer located on the surface
of the Earth is subject to Earth’s gravity force
that incurs non-geodesic acceleration of grav-
ity g = 9.81 m/s2. On the other hand, ob-
server located on board of a drag-free satellite
is not subject to any external force, and moves
along a geodesic. The observer is always lo-
cated at the origin of the local (topocentric)
frame. He measures the proper time τ with the
help of the ideal clock, and the proper length
` with the help of the ideal rules calibrated by
means of light (laser) pulses which he sends

to and receives back from retroreflectors and
or transponders placed on other celestial bod-
ies. Spatial axes of the observer’s local frame
are not rotating in dynamic sense and their ori-
entation is maintained by the gyroscopes. The
proper time, τ, and the spatial axes, ξi, of the
local frame are considered as four-dimensional
coordinates ξα = {τ, xi}.

Relative motion of observer is usually mea-
sured, and is supposed to be well-known, with
respect to another local frame associated with
the massive body at the surface of which (or
by which) the observer is located. The most
theoretically-elaborated example of such a lo-
cal frame is the geocentric frame.

2.2. The geocentric reference frame

Geocentric reference frame is a local frame
parametrised with coordinates wα = {u,wi}
where u is the coordinate time and wi are spa-
tial coordinates with origin at the center of
mass of the earth. The spatial axes have no ro-
tation in kinematic sense with respect to the
BRF, and stretch over space out to the distance
being determined by the acceleration of the
world line of geocenter (Kopeikin et al. 2011).

Besides the geocentric frame, there exists a
number of other local frames in the solar sys-
tem associated with the massive planets and
their satellites (moons). These frames are re-
quired to describe the orbital motion of plan-
etary satellites, for spacecraft’s navigation, or
for measuring gravitational field of the plan-
ets. The geocentric and all planetocentric ref-
erences frames are intimately related to a sin-
gle coordinate chart known as the barycentric
reference frame of the solar system.

2.3. The barycentric reference frame

The barycentric reference frame of the solar
system is parametrized with coordinates xα =
{t, xi} having the origin at the center of mass
of the solar system. Because the spacetime is
assumed to be asymptotically-flat the spatial
coordinate axes of the barycentric frame go to
(spatial) infinity. Moreover, they have no kine-
matic rotation or deformation. Practical real-
ization of this frame is given in the form of
ICRF that represents a catalogue of several
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hundred radio quasars uniformly distributed
over the whole sky (Lanyi et al. 2010).

2.4. Transformation between the frames

Coordinates corresponding to the astrometric
frames of the solar system are connected to
each other by a smooth post-Newtonian trans-
formations defined in the domain of overlap-
ping the coordinate charts. These transforma-
tions generalize the Lorentz transformation of
special theory of relativity by taking into ac-
count the effects of the gravitational field of the
solar system objects.

The IAU paradigm of the astrometric refer-
ence frames works very well in the solar sys-
tem. However, it remains unclear to what ex-
tent the paradigm can be hold beyond the so-
lar system. The problem is that the solar sys-
tem is not fully isolated from the external en-
vironment – it moves around the center of
our own galaxy with some finite acceleration.
Moreover, a more important argument is that
the spacetime is not asymptotically flat but is
described by the Robertosn-Walker metric of
the expanding universe. It motivates us to ex-
tend the framework of the IAU paradigm and
to build the coordinates associated with the
galaxy and with the expanding universe.

3. The galactocentric reference frame

Definition of the galactocentric coordinates
Xα = {T, Xi} is a fairly straightforward gen-
eralization of the IAU paradigm. We consider
now the whole galaxy as an isolated system
with asymptotically flat spacetime. Then, the
barycentric reference frame of the solar sys-
tem becomes one of the local frames associated
with stars or clusters of stars in the galaxy. We
put the origin of the galactocentric coordinates
at the center of mass of the Milky Way and pos-
tulate that the coordinate spatial axes do not ro-
tate in kinematic sense with respect to quasars.
Transformation between the barycentric coor-
dinates of the solar system and the galactocen-
tric coordinates is given by

t = T − c−2
[
B(T ) − V i

B

(
Xi − Xi

B

)]
, (1)

xi = Li
j

(
X j − X j

B

)
, (2)

where V i
B is the velocity of the barycenter with

respect to the center of mass of the Milky Way
(VB ' 250 km/s), and the matrix

Li
j =

(
1 +

Ugal

c2

)
δi j + c−2

(
1
2

V i
BV j

B + F[i j]
)
, (3)

describes the Lorentz and gravitational length
contractions due to the velocity V i and the
gravitational potential Ugal of the Milky Way as
well as a rotation of spatial axes of the barycen-
tric frame with respect to the axes of the galac-
tocentric frame (the term with F[i j]). The or-
bital motion of the solar system with respect to
the galactocentric coordinates is slow. Hence,
all quantities depending on the position of the
barycenter of the solar system, Xi

B can be ex-
panded in the polynomial series of time. For
example 1,

Xi
B(T ) = Xi

B(T0) + V i
BT +

1
2

Ai
BT 2 + ... , (4)

B(T ) = B(T0) + Ḃ(T0)T +
1
2

B̈(T0)T 2 + ... ,(5)

and so on. Here,

Ḃ =
1
2

V2
B + Ugal , (6)

B̈ = VB · AB + U̇gal . (7)

The velocity-dependent term in (1) causes
the change in the rate of the barycentric time
(TCB) as measured at distance R = |Xi − Xi

B|
from the barycenter. For terrestrial observer it
reveals as an annual periodic variation amount-
ing to 0.37 s. Nevertheless, this large relativis-
tic effect is extremely difficult to observe as it
is hidden in the astrometric positions of stars in
the form of the secular aberration (Kopeikin &
Makarov 2006). Function B(T ) in (1) causes
divergence of TCB from the more uniform,
galactocentric time T . The derivative Ḃ ' 8.4×
10−7 redefines the unit of time (SI second) as
measured in TCB. It causes re-scaling the as-
tronomical unit of length and mass. This point
has been never discussed by the IAU, and its
practical consequences for astrometric obser-
vations are not quite clear. The second deriva-
tive B̈ ' 2 × 10−15 yr−1 causes systematic

1 An overdot denotes a time derivative. Ai
B = V̇ i

B
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quadratic drift of TCB with respect to the uni-
form galactic time. It may be important in pre-
cise astrometric observations of quasars to en-
sure the stability of the ICRF and the space
astrometry catalogues. The rate of relativistic
precession of the spatial axes of the barycen-
tric frame of the solar system with respect to
the galactocentic frame, is small and amounts
to 0.004 µas/yr−1. It can be ignored in process-
ing of astrometric observations.

4. Astrometric frame in cosmology

Cosmological observations have established
that the universe is expanding with accel-
eration. Current cosmological paradigm ex-
plains this acceleration by the presence of
the dark energy. The nature of the dark en-
ergy is yet unknown but the common wis-
dom is that it is made of a scalar field with
self-interaction described by some form of
potential. Cosmological observations also re-
veal the presence of the dark matter in halos
of galaxies and the clusters of galaxies. The
overall spacetime in cosmology is curved and
time-dependent with space cross-sections be-
ing flat. The background Friedmann-Lemetre-
Robertson-Walker (FLRW) metric ḡαβ of the
universe is conformal to the flat spacetime.
In the isotropic coordinates the FLRW metric
reads

ḡαβ(η) = a2(η)ηαβ , (8)

where a(η) is the scale factor depending on the
conformal time η, and ηαβ is the Minkowski
metric. The presence of the solar system (and
other massive bodies - stars, galaxies, etc.)
causes perturbation of the background metric

gαβ(η, x) = a2(η)
(
ηαβ + hαβ

)
, (9)

which should be compared with the current
post-Newtonian paradigm of the IAU that pos-
tulates that the scale factor a(η) ≡ 1. This pos-
tulate is not valid, at least, in principle, thus,
challenging theorists for deeper exploration of
the impact of cosmological expansion on as-
trometric measurements and on dynamics of
self-gravitating systems like the solar system,
binary pulsars, galaxies and their clusters.

The task is to calculate the perturbation
hαβ by solving Einstein’s equations. Physical

cosmology has developed a powerful approx-
imation scheme for doing this. Unfortunately,
it can not be applied for calculation cosmo-
logical perturbations caused by self-gravitating
isolated systems. This is because physical cos-
mology assumes the density contrast of the
perturbation, δρ/ρ̄ � 1, where ρ̄ is the mean
density of the universe 2. However, the den-
sity contrast in isolated astronomical system,
δρ/ρ̄ � 1, that makes unacceptable any ap-
proximation method previously developed in
cosmology to find out the metric perturbation
hαβ for the purposes of celestial mechanics and
astrometry.

To overcome the problem some researchers
resorted to exact methods of embedding a
spherically-symmetric Schwarzschild solution
to the expanding FLRW universe. The most
famous model was worked out by Einstein &
Straus (1945, 1946) and is known as the Swiss
cheese or vacuole solution (Schücking 1954)
in a dust-dominated universe. The vacuole so-
lution is unsatisfactory from theoretical point
of view since it is unstable and can be de-
stroyed by imposing an infinitesimal pertur-
bation. Furthermore, the vacuole model does
not provide a realistic model of spacetime at
the scales below the scale of galaxy clusters.
This is because the radius of the vacuole for
a central object like a star or a galaxy signif-
icantly exceeds the average distance between
stars/galaxies (Bonnor 2000).

For this reason other exact solutions were
sought. However, the complexity and non-
linearity of Einstein’s equations make it a dif-
ficult task to construct a suitable exact solution
which may serve as realistic model for actual
physical situations. Indeed, as a rule, exact so-
lutions of Einstein’s equations are known for
idealized situations typically admitting high
degree of symmetry. At the same time, re-
alistic environment of isolated gravitational
systems has no symmetry. The problem then
is how to immerse the non-symmetric (and
time-dependent) localized distribution of mass
smoothly to the expanding FLRW universe.
The predominant idea was to glue several exact
solutions across suitably chosen hypersurface
with the appropriate matching conditions im-
posed on the metric tensor and its derivatives.

2 ρ̄ ' 10−30 g/cm3 in the present epoch
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Such an approach was pioneered
by McVittie (1933) who has taken the
Schwarzschild solution and embedded it to a
spatially-flat FLRW universe by multiplying
the spatial part of Schwarzschild’s metric
by a time-dependent scale factor a(t). Such
“marriage” of two metrics is possible, if
and only if, the mass of the central body
is a function of time, m = m0/a(t), where
m0 is a constant mass. Scrutiny analysis of
Einstein’s equations reveals that in the most
general case, McVittie’s metric is physically
implausible because imposing the condition
of a non-vanishing central mass m0 and the
time-dependence scale factor a(t) of the FLRW
spacetime leads to an unrealistic equation of
state of matter in universe. Similar to the
case of the vacuole solution, the McVittie
metric is spherically-symmetric and, hence,
inappropriate for analysing more realistic
situations having no spherical symmetry like
binary pulsars or planetary systems.

The only way to surpass mathematical dif-
ficulties of embedding an isolated astronomical
system to the cosmological environment is to
resort to a suitable method of approximations
which generalizes the post-Newtonian approx-
imations in asymptotically-flat spacetime to
the case of curved and expanding cosmologi-
cal manifold.

5. Post-Newtonian approximations in
cosmology

We have worked out a new method of finding
cosmological perturbations induced by an iso-
lated astronomical system (Kopeikin & Petrov
2012) which is valid for sufficiently high con-
trasts of matter density but singularities, and
for arbitrary equation of state of the back-
ground matter. It is based on the Lagrangian
theory of perturbations of an arbitrary-curved
and dynamically-evolving spacetime manifold
(Grishchuk et al. 1984; Popova & Petrov
1988). In our approach both the universe and
the localized source of perturbation are mathe-
matically modelled by a Lagrangian depend-
ing on a set of dynamic variables which in-
clude the metric perturbation, hαβ, and sev-
eral scalar fields Φ,Ψ, .... The metric pertur-
bation describes the gravitational field of the

isolated astronomical system along with the
perturbation of the background universe. The
perturbation of the background geometry cou-
ples with the source of gravitational field of
the isolated system and makes the effective
mass of the system depending on time even
if the bare mass of the system was taken as
constant. This resembles and may explain the
physical origin of the time-dependence of the
central mass in the McVittie metric. The scalar
fields describe the structure of matter. In par-
ticular, the dark matter is modelled as a per-
fect fluid described by the Clebsch potential,
Φ, that is the specific enthalpy, µ, of the fluid
(Schutz 1970). The dark energy is modelled as
a quintessence scalar field, Ψ, with an arbitrary
potential W(Ψ). Other scalar fields being per-
tinent to the problem may be accounted for,
if necessary. The localized isolated system is
also described by a Lagrangian of a continu-
ous distribution of matter. It serves as a source
of gravitational field of the isolated system that
is a bare perturbation of the background cos-
mological spacetime.

The overall Lagrangian of the system is
presented as a Taylor (asymptotic) series with
respect to the perturbations of all variables,

L = L̄ +L1 +L2 + . . . , (10)

where L̄ is the Lagrangian of the background
FLRW universe, and Li (i = 1, 2, . . .) are
linear, quadratic, etc. perturbations. The field
equations for the metric perturbation and the
dynamic matter variables are obtained by tak-
ing variational derivatives from L with respect
to the variables hαβ, Φ, Ψ, etc. We do not im-
pose any limitation on the equation of state of
the background FLRW universe so that the the-
ory is applicable for wide range of cosmologi-
cal models.

As an example, we write down the system
of the field equations defining the metric tensor
perturbations in case of the universe filled up
with the dark matter in the form of dust and
the dark energy in the form of the cosmological
constant Λ. They are (Kopeikin & Petrov 2012)

�q − 2Hv̄αq,α +
(
H2 − a2Λ

)
q = (11)

8πa2
[
σ + ρ̄m

(
δm + a−1Hχm

)]
,

�pα − 2Hv̄βpα,β +
(
H2 − a2Λ

)
pα = 16πaσα ,
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�pαβ − 2Hv̄γpαβ,γ = 16πσαβ ,

where H = ȧ/a is the Hubble parameter,
� = ηµν∂µν is the wave operator in flat space-
time, comma denotes a partial derivative with
respect to a corresponding coordinate, q =
v̄αv̄βlαβ, pα = −π̄αβv̄γlβγ, pαβ = π̄α

µπ̄β
νlµν,

lαβ = −hαβ+(hµµ/2)ηαβ, and π̄αβ = δ
β
α+ v̄αv̄

β is
the operator of projection on the hypersurface
being orthogonal to 4-velocity vα of observer
with respect to the FLRW isotropic frame. The
source of the gravitational perturbations is the
tensor of energy-momentum, ταβ, of the local-
ized system, and

σ = v̄αv̄βταβ + π̄αβταβ , (12)

σα = −π̄αβv̄γτβγ ,
σαβ = π̄α

µπ̄β
ντµν .

We notice that the source of the scalar
gravitational perturbation q includes two more
functions, δm and χm, which describe the den-
sity perturbation of the background FLRW
spacetime. Equations for these functions are as
follows (Kopeikin & Petrov 2012)

v̄αv̄βδm,α,β + Hv̄αδm,α − 4πa2ρ̄mδm = (13)

4πa2σ ,

�χm +
1
2

(
3H2 − a2Λ

)
χm = av̄αδm,α , (14)

where ρ̄m is the mean density of the back-
ground universe. The perturbation δm is in-
duced by the presence of the localized system.
However, it can be generated by the primor-
dial cosmological perutbations as well. The
impact of the Hubble-induced density ρ̄m on
the measured mass of the isolated system is
small. However, it is accumulated over time
starting from the origination of the progenitor
of the isolated system making significant con-
tribution to the current value of the observed
mass.

6. Connection to astrometric
observables

The connection of the theory to astrometric ob-
servations is not straightforward. First of all,
we notice that q is to be an analogue of the
Newtonian potential but solution of (11) does
not yield the Newtonian potential right away.

This is because of the presence of the scale fac-
tor a in the right side of equation (11) which
makes the solution dependent on cosmological
time. The magnitude of the “Newtonian” po-
tential q evolves in the conformal coordinates
as the universe expands – the effect which can
be interpreted as time-dependence of the uni-
versal gravitational constant G in the spirit of
the Dirac large numbers hypothesis. However,
the conformal coordinates are not observable
quantities nor any other coordinates. The re-
lationship between the coordinates and obser-
vations is established by mean of propagating
photons between worldline of observer and a
spacetime event. The round trip of photon is
described by solution of light geodesics which
is given in the first approximation and in the
conformal coordinates by the same equation as
in flat spacetime,

xi = ki(η − η0) + xi
0 . (15)

Here, ki is the unit vector in the direction of
propagation of photon (δi jkik j = 1), η0 is the
(conformal) time of emission of photon from
the point with coordinates xi

0. The conformal
time, η, relates to the proper time of observer,
τ, by an ordinary differential equation,

dτ
dη

= a(η)
(
1 − β2 − hµνβµβν

)1/2
, (16)

where βi = dxi/dη is the velocity of ob-
server expressed in the conformal coordinates.
Solution of this equation depends on the scale
factor a(η). Hence, the radar distance ` =
c(τ3 − τ1) between observer and the point
in space is a rather complicated function of
the conformal coordinates and the scale factor
a(η). The overall technical details of the calcu-
lation of observables along with the discussion
of the post-Newtonian dynamics in the expand-
ing universe are given in (Kopeikin & Petrov
2012).

Acknowledgements. I am grateful to the organizers
of the Great-ESF workshop in Porto – M.-T. Crosta
and S. Anton, for providing partial travel support
and to the Faculty of Sciences of the University of
Porto for hospitality. This work was partially sup-
ported by the Faculty Incentive Grant 2011 of the
College of Arts and Science of the University of
Missouri in Columbia.



Sergei Kopeikin: Astrometric reference frames in the solar system and beyond 1007

References

Bonnor, W. B. 2000, Classical and Quantum
Gravity, 17, 2739

Carrera, M. & Giulini, D. 2010, Reviews of
Modern Physics, 82, 169

Einstein, A. & Straus, E. G. 1945, Reviews of
Modern Physics, 17, 120

Einstein, A. & Straus, E. G. 1946, Reviews of
Modern Physics, 18, 148

Grishchuk, L. P., Petrov, A. N., &
Popova, A. D. 1984, Communications
in Mathematical Physics, 94, 379

Klioner, S. A. 2004, Phys. Rev. D, 69, 124001
Kopeikin, S. 2011, Scholarpedia, 6, 11382
Kopeikin, S., Efroimsky, M., & Kaplan, G.

2011, Relativistic Celestial Mechanics of the
Solar System, ed. Kopeikin, S., Efroimsky,
M., & Kaplan, G.

Kopeikin, S. & Petrov, A. N. 2012, to be sub-
mitted to Phys. Rev. D

Kopeikin, S. M. 2007, in American Institute of
Physics Conference Series, Vol. 886, New
Trends in Astrodynamics and Applications
III, ed. E. Belbruno, 268–283

Kopeikin, S. M. & Makarov, V. V. 2006, AJ,
131, 1471

Krasinsky, G. A. & Brumberg, V. A. 2004,
Celestial Mechanics and Dynamical
Astronomy, 90, 267

Lanyi, G. E., et al. 2010, AJ, 139, 1695
McVittie, G. C. 1933, MNRAS, 93, 325
Popova, A. D. & Petrov, A. N. 1988,

International Journal of Modern Physics A,
3, 2651

Schücking, E. 1954, Zeitschrift fur Physik,
137, 595

Schutz, B. F. 1970, Phys. Rev. D, 2, 2762
Soffel, M., et al. 2003, AJ, 126, 2687


	Introduction
	Astrometric frames in the solar system
	The proper frame of observer
	The geocentric reference frame
	The barycentric reference frame
	Transformation between the frames

	The galactocentric reference frame
	Astrometric frame in cosmology
	Post-Newtonian approximations in cosmology
	Connection to astrometric observables

